水分测定仪主要是用来测量水分含量的仪器,有损的检测方法指在测量的过程中待测物粉碎或发生了化学变化,致使其不能保持原有的形状、结构或组分。在这两类中,无损检测的方法更经济、快捷,发展也最为迅速,是当今世界水分测定仪检测的主流。
直接干燥法,直接干燥法是指将待测样品置于烘箱中,根据ASAE标准,在130℃的温度下保持19h,测量前后的质量差,即为其水分测定仪含量。
电容法,电容法是根据水分测定仪的介电常敦?电容法通过复阻抗分离电路的设计,有效消除电阻参量的影响,而只保留电容参量的变化。这种方法对提高电容式水分测定仪计测量精度具有重要意义。
高频阻抗法,高频阻抗法是依据在敏感频带(100k~250kHz)施以外加电场的情况下粮食水分测定仪与其交流阻抗呈现对数关系这一理论来测量其水分测定仪的。测量精度≤0.5%,测量时间为1.2s,主要影响因素为温度、品种、紧实度与电极间距。该法不能进行在线测量。
摩擦阻力法,粮食的动态摩擦阻力与含水率成线性关系,含水率高,摩擦阻力大。该法干扰因素少,干扰强度低微,传感技术稳定、可靠,标定方便,调整灵活,寿命长,价格低,便于实现自动控制。
声学法,1986年,Harrenstein和Brusewitz研究了流动谷物碰撞噪声的测量方法。研究表明:粮食籽粒的弹性和振动特性取决于粮食水分测定仪,不同水分测定仪的粮食在流动过程中碰撞物体表面时所产生的声压不同。声学法测量重复性好,但噪声信号的屏蔽是一个难题。代表仪器为声学法水分测定仪测试仪,测量精度≤0.25%,测量时间为0.007s,主要影响因素为噪声、籽粒大小与形状。该法可进行在线测量。以上3种方法是目前有待于进一步发展且很有潜力的方法。摩擦阻力法与声学法在理论上都有望实现在线测量,只是目前干扰因素较多,有些问题还需要进一步探讨。高频阻抗法已经开发出了一种智能插杆式快速水分测定仪测定仪,产品已经通过粮油行业的测试检验并在粮油系统推广使用,并被评为国家级重点新产品。
核磁共振法,核磁共振法是在一定条件下原子核自旋重新取向,从而使粮食在某一确定的频率上吸收电磁场的能量,吸收能量的多少与试样中所含的核子数目成比例。该法检测迅速、精度高、测量范围宽,可区分自由水和结合水;其不足之处是仪器昂贵,保养费用大,需精确标定。代表仪器为核磁共振水分测定仪测试仪,测量精度≤0.5%,测水范围为0.05%~100%,主要影响因素为物料流量、堆密度和温度,可进行在线测量。
射线法,近红外线反射光谱(NIRS)是在1964年应用于粮食水分测定仪测定的。由于不同的分子对不同波长的近红外光具有不同特征的吸收,当用近红外光(波长为1940nm)照射样品时,漫反射光的强度与样品的成分含量有关,服从朗伯—比尔定律。该方法测量快速、简单,无需对粮食进行烘干,只需在仪器前流动即可检测,但仅属于表面测量技术,很难反映整个物料的体积水分测定仪(内部水分测定仪),测量精度受粮食籽粒的大小、形状和密度影响。
微波吸收法始于19世纪40年代,它利用粮食中的水分测定仪对微波能量的吸收或微波空腔谐振频率和相位等参数随水分测定仪的变化来间接地测量水分测定仪含量的。其优点为灵敏度高、速度快、安全、不损坏物料、可在线连续测量、测量信号易于联机数字化和可视化;缺点是检测下限不够低,易引起驻波干扰,测量值与物料成分有关,不同品种需单独标定。代表仪器为在线微波水分测定仪仪,测量精度为±0.1%,测量时间为0.5s,测水范围为0~40%,主要影响因素为品种、物料、形状和密度,并可进行在线测量。
中子式水分测定仪仪,自20世纪40年代由美国研究成功中子式水分测定仪仪以来,世界各国也相继研制出成各种用途的中子水分测定仪仪并商品化。它通过计量慢中子探测器中产生的电压脉冲个数测量粮食的水分测定仪含量。中子式水分测定仪仪具有线性度高、高水分测定仪段仪器灵敏、冰冻状态粮食水分测定仪仍然可测、不破坏粮食结构、不影响粮食正常运行状态等优点;缺点在于氢的散射特性不稳定,理论尚未完善,需要人工标定,而且粮食密度和测量体积大小对其精度影响较大。
105℃恒重法,用比水沸点略高的温度(105°±2℃)使经过粉碎的定量式样中的水分测定仪全部汽化蒸发,根据所失水分测定仪的质量来计算水分测定仪含量。该方法是水分测定仪检测最常用的标准方法之一。
粮食水分测定仪检测技术的发展趋势,粮食水分测定仪仪的种类虽然很多,其市场潜力却不尽相同,计算机技术、原子技术与半导体技术的飞速发展,给粮食水分测定仪检测技术的发展提供了广阔的空间。为了实现全数字、实时在线测量,就必须要有快速无损检测技术作为保证。随着对无损检测技术的需要,无损检测仪器将逐步实现标准化、通用化和系列化,大规模可编程逻辑器件和数字信号处理器的推广和成本的降低,必将加速其在无损检测技术上的应用,不仅提高信号采集和处理速度,满足市场大量实时性要求,也将缩短开发时间,增加硬件的功能和扩展性。计算机软件及硬件在无损检测技术上的应用,将实现温度等重要检测因素的自动补偿,使检测仪器由过去的单一化向多用途方向发展,适用于多种不同环境下的无损检测。互联网技术的迅猛发展会为无损检测技术带来质的飞跃,实现多用户共享和远程控制,避免人力、物力和财力的浪费。
详情登录http://www.ulong88.com进行了解